, Helen K. Pigage 1, Peter J. Wettstein 2, Stephanie A. Prosser 1 and Jon C. Pigage 1ˆ. Jeremy M. Bono 1*

Size: px
Start display at page:

Download ", Helen K. Pigage 1, Peter J. Wettstein 2, Stephanie A. Prosser 1 and Jon C. Pigage 1ˆ. Jeremy M. Bono 1*"

Transcription

1 Bono et al. BMC Evolutionary Biology (2018) 18:139 RESEARCH ARTICLE Genome-wide markers reveal a complex evolutionary history involving divergence and introgression in the Abert s squirrel (Sciurus aberti) species group Jeremy M. Bono 1*, Helen K. Pigage 1, Peter J. Wettstein 2, Stephanie A. Prosser 1 and Jon C. Pigage 1ˆ Open Access Abstract Background: Genetic introgression between divergent lineages is now considered more common than previously appreciated, with potentially important consequences for adaptation and speciation. Introgression is often asymmetric between populations and patterns can vary for different types of loci (nuclear vs. organellar), complicating phylogeographic reconstruction. The taxonomy of the ecologically specialized Abert s squirrel species group has been controversial, and previous studies based on mitochondrial data have not fully resolved the evolutionary relationships among populations. Moreover, while these studies identified potential areas of secondary contact between divergent lineages, the possibility for introgression has not been tested. Results: We used RAD-seq to unravel the complex evolutionary history of the Abert s squirrel species group. Although some of our findings reinforce inferences based on mitochondrial data, we also find significant areas of discordance. Discordant signals generally arise from previously undetected introgression between divergent populations that differentially affected variation at mitochondrial and nuclear loci. Most notably, our results support earlier claims (disputed by mitochondrial data) that S. aberti kaibabensis, found only on the north rim of the Grand Canyon, is highly divergent from other populations. However, we also detected introgression of S. aberti kaibabensis DNA into other S. aberti populations, which likely accounts for the previously inferred close genetic relationship between this population and those south of the Grand Canyon. Conclusions: Overall, the evolutionary history of Abert s squirrels appears to be shaped largely by divergence during periods of habitat isolation. However, we also found evidence for interbreeding during periods of secondary contact resulting in introgression, with variable effects on mitochondrial and nuclear markers. Our results support the emerging view that populations often diversify under scenarios involving both divergence in isolation and gene flow during secondary contact, and highlight the value of genome-wide datasets for resolving such complex evolutionary histories. Keywords: Admixture, Divergence with gene flow, Mito-nuclear discordance, Mitochondrial capture, Hybridization, Ponderosa pine * Correspondence: jbono@uccs.edu ˆDeceased 1 Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA Full list of author information is available at the end of the article The Author(s) Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

2 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 2 of 17 Background The evolutionary histories of many species are characterized by repeated range contractions and expansions, leading to periods of isolation and subsequent secondary contact between divergent lineages [1, 2]. Interbreeding during secondary contact can result in genetic introgression, which appears to be more common than previously assumed and has significant consequences for the diversification process [3 6]. Patterns of introgression are often highly variable, involving asymmetry in the direction of gene flow among populations, and also differences in the amount of introgression across distinct genomes (i.e. organellar or nuclear) or genomic regions [3]. In the past, phylogeographic reconstruction has relied extensively on the use of mitochondrial DNA. More recently, the inclusion of nuclear loci has become more common, particularly with the advent of next-generation sequencing technologies that enable genome-wide sampling [7 9]. As more such datasets are generated, discordance between mitochondrial and nuclear genomes has been detected with increasing regularity [3]. In many cases, this discordance is explained by differential patterns of introgression for mitochondrial and nuclear loci, with introgression of mitochondrial haplotypes seemingly occurring more easily than nuclear loci [3, 10, 11]. In extreme cases, the mitochondrial genome of one lineage has completely replaced that of another, as, for example, observed in chipmunks from the genus Tamias [12]. Complete mitochondrial capture could be explained by positive selection on favorable mitochondrial haplotypes or genetic drift coupled with specific demographic scenarios such as range expansion or sex-related asymmetries in gene flow [3, 11, 13, 14]. Abert s squirrels (Sciurus aberti) are endemic to the Rocky Mountain region of Colorado, Arizona, and New Mexico in the United States, and the Sierra Madre Occidental, in northern Mexico. In the Rocky Mountain region, they are considered habitat specialists, relying on ponderosa pine (Pinus ponderosa var. scopulorum) for nesting sites and feeding almost exclusively on hypogeous fungi associated with tree root systems, seeds, and inner bark of terminal twigs [15 17]. This ecological dependence has resulted in a distribution that is almost entirely coincident with ponderosa pine in the Rocky Mountains, although squirrels are absent from many areas occupied by ponderosa pine and have persisted in other areas without extensive stands of ponderosa pine following human introductions [18, 19]. Less is known about associations in the Sierra Madre Occidental of Mexico, but squirrels are found in forests occupied by pine species that were once considered varieties of ponderosa pine (e.g. P. arizonica). Within the range of Abert s squirrels, pine forests are mainly restricted to montane environments (between m), forming a patchwork of islands isolated by broad barriers of unsuitable habitat. Current habitat isolation, coupled with past range contractions and expansions associated with glaciation cycles, has resulted in considerable genetic and morphological divergence among populations [20 22]. The Abert s squirrel complex has been the subject of numerous taxonomic debates resulting in several revisions over the years. For example, the population on the Kaibab Plateau of Arizona is separated from the closest neighboring populations by the Grand Canyon, and was once considered a textbook example of allopatric speciation due to vicariance [23 25]. Sciurus kaibabensis was later relegated to subspecies status due to a lack of significant morphological differentiation from populations south of the Grand Canyon outside of conspicuous differences in pelage color [20]. While previous taxonomic schemes have included as many as nine subspecies of S. aberti, the most recent formal taxonomic revision of the group includes a total of six [20]. Subsequent genetic studies based on mitochondrial DNA (cytochrome b and data from restriction profiles across the entire mitochondrial genome), supported some, but not all, of these designations [21, 22]. Notably, these studies supported the close relationship between S. aberti kaibabensis and populations of S. aberti aberti south of the Grand Canyon, with minimal genetic divergence between these populations evident at mitochondrial loci. Based on these data, it was reasonably concluded that S. aberti kaibabensis likely colonized the north rim of the Grand Canyon only recently from source populations on the south side of the canyon [21, 22]. These studies further revealed a deep split between these western populations (S. aberti kaibabensis and S aberti aberti from Arizona) and populations further east in New Mexico and Colorado. Interestingly, S. aberti chuscensis, found only in the Chuska mountain range on the border of New Mexico and Arizona, included individuals carrying mitochondrial haplotypes from both western and eastern clades [21, 22]. The presence of these divergent haplotypes, coupled with the location of this population near the center of an area of unsuitable habitat separating the western and eastern clades, suggested a scenario of secondary contact between divergent eastern and western lineages in this region. Since these data were derived from haploid non-recombining mitochondrial DNA samples, it was not possible to infer whether genetic admixture between these lineages has subsequently occurred in this location. These previous studies also failed to fully resolve the relationship between the most southern populations in Mexico (S. aberti barberi and S. aberti durangi) and the populations in the United States. The study based on cytb sequences suggested these populations were the first to diverge from the others [21], as might be expected if S. aberti initially expanded from

3 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 3 of 17 southern glacial refugia. However, the study based on mitochondrial restriction profiles suggested that these populations were more closely-related to members of the eastern clade than to those from the western clade [22]. Abert s squirrels represent an exciting system in which to investigate how patterns of divergence and admixture resulting from historical range shifts impact genetic diversity and differentiation. In this study, we use genome-wide single nucleotide polymorphisms (SNPs) generated from Restriction Associated DNA sequencing (RAD-seq data) to further resolve the evolutionary history of the complex of S. aberti species. Results Population structure and genetic diversity We used RAD-seq to identify SNPs for genetic analyses of samples collected from across the range of S. aberti (Fig. 1) and one outgroup sample (S. griseus). Population structure analysis using Weir and Cockerham s F ST revealed substantial genetic structure among S. aberti populations collected from different localities with the F ST overall being (CI: ). Pairwise F ST values were generally quite high with the exception the comparison of S. aberti chuscensis samples carrying the different mitochondrial haplotypes (Fig. 2; Additional file 1). The largest values were between S. aberti kaibabensis and all other populations (range: ), and S. aberti barberi and all other populations (range: ). Among other comparisons, the lowest value was between S. aberti ferreus from San Juan and Carson-SFW (0.098) and the highest values were between the S. aberti chuscensis groups and S. aberti aberti from San Juan (0.431 and 0.383). The first three eigenvectors from the Principal components analysis (PCA) explained 7.7, 4.1, and 3.3% of variation, respectively, and largely separated all the groups except for the samples carrying divergent mitochondrial haplotypes in S. chuscensis (Fig. 3a). In line with F-statistics, S. aberti barberi and S. aberti kaibabensis were the most divergent populations, being clearly separated from all other samples by the first two eigenvectors. Because the magnitude of this divergence made it difficult to visualize separation of the other populations, we removed S. aberti barberi and S. aberti kaibabensis and ran the analysis again (Figs. 3b, c, and d). Eigenvectors one and two clearly separated western (S. aberti aberti Coconino-Gila/MT-Zuni and S. chuscensis) and eastern (S. aberti aberti Carson-SFW/San Juan, and S. aberti ferreus) samples, and distinguished groups within the western samples. The third eigenvector separated the eastern samples, although there was some overlap among samples from San Juan and Carson-SFW. Samples from Carson E were approximately intermediate between San Juan/Carson-SFW and Pike. Genetic clustering by ADMIXTURE and STRUCTURE also indicated significant population structure, with K = 5 being chosen as optimal by the CV procedure of AD- MIXTURE and K = 6 identified as optimal for the STRUCTURE analysis based on Evanno s method (Fig. 4). Although the number of optimal genetic clusters was different for the two methods, overall there was broad agreement between them, with members of most populations drawing ancestry mainly from a single genetic cluster. Moreover, both methods suggested that the S. aberti aberti Coconino-Gila population, the S. aberti aberti MT-Zuni population, and the S. aberti ferreus Carson E population had a mixed pattern of ancestry. The exact pattern of admixture for these populations differed, however. For example, although both methods indicated that S. aberti aberti Coconino-Gila population and the S. aberti aberti MT-Zuni population were admixed, the STRUCTURE analysis identified a separate genetic cluster unique to these two populations and little ancestry from clusters mainly associated with eastern populations. In contrast, the ADMIXTURE analysis indicated that the S. aberti aberti Coconino-Gila population had ancestry from all genetic clusters, while S. aberti aberti MT-Zuni lacked any ancestry from the genetic cluster mainly associated with S. aberti barberi. Notably, both methods showed that individuals from S. aberti aberti Coconino-Gila had substantial ancestry from the genetic cluster associated with S. aberti kaibabensis, and the ADMIXTURE results indicated some ancestry from this cluster in S. aberti aberti MT-Zuni as well. Both methods indicated mixed ancestry for individuals from the S. aberti ferreus Carson E population, with evidence for ancestry from genetic clusters associated with S. aberti ferreus Pike and S. aberti aberti San Juan/Carson-SFW. All measures of genetic diversity were highest in the S. aberti barberi population from Mexico, with S. aberti aberti Coconino-Gila exhibiting the next highest levels (Fig. 5). Conversely, S. aberti kaibabensis generally exhibited the lowest genetic diversity. In general, genetic diversity tended to be lower in eastern populations than in western populations. Although we acknowledge that RAD-seq can lead to underestimates of genetic diversity due to the loss of restriction sites [7, 26, 27], our main interest was to compare relative levels of diversity among populations. These relative estimates do not appear to be greatly affected by allelic dropout, as loss of restriction sites should be most common in the most divergent populations, leading to underestimates of diversity in these samples. In contrast to this expectation, S. aberti barberi, which was highly divergent from all other populations, also had the highest relative diversity.

4 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 4 of 17 Fig. 1 S. aberti approximate collecting locations with samples sizes given in parentheses. The distribution of ponderosa pine (or closely related species in Mexico) is shaded in green. MT = Mount Taylor; SFW = Santa Fe West; E = East; AZ = Arizona; NM = New Mexico; CO = Colorado Evolutionary relationships and introgression among populations The best maximum-likelihood trees produced by RAXML-NG using either GTR or TVM nucleotide substitution models exhibited the same topology with respect to the sampled populations (results from the GTR model are shown in Fig. 6). The tree gives strong support for monophyly of all groups except for S. aberti aberti Carson-SFW/S. aberti aberti San Juan, which were intermingled, and S. aberti chuscensis samples carrying the two haplotype lineages, which were also intermingled (Fig. 6). This analysis also identified S. aberti

5 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 5 of 17 Fig. 2 Heatmap showing Weir and Cockerham s pairwise F ST values calculated using genome-wide SNPs barberi as the earliest branching lineage in the group. We do not present information on branch lengths since previous studies have shown that they can be unreliable for concatenated SNP datasets [28]. Based on the RAXML-NG tree, we designated S. aberti barberi as the outgroup in the TREEMIX analysis. The maximum-likelihood tree with no migration produced by TREEMIX showed the same relationships among S. aberti populations as the RAXML-NG tree (Fig. 7a). We added migration events to the tree in a step-wise manner until additional edges were no longer statistically significant, which resulted in a total of five migration edges (Table 1).Thetopologyofthefinaltreewithfivemigration edges differed from the original tree with no migration, as S. aberti aberti Coconino-Gila moved into a clade with S. aberti aberti MT-Zuni and S. aberti chuscensis, and the position of S. aberti ferreus Carson E shifted to be more closely related to S. aberti aberti San Juan/Carson-SFW than S. aberti ferreus Pike (Fig. 7b). We treat the placement of these populations somewhat cautiously since TREEMIX does not assign confidence to the tree topology. However, we also note that these relationships are generally consistent with other analyses (e.g. PCA and genetic clustering). In general, the migration edges inferred by TREEMIX were supported by patterns of admixture suggested by at least one of genetic clustering analyses. To more robustly examine the significance of each migration edge we conducted a series of four-population tests (Table 1). We did not test the third edge (population equally related to ferreus Carson E, ferreus Carson-SFW, ferreus San Juan - > ferreus Carson-SFW) since the source population was not sampled. These tests generally supported the validity of the migration edges inferred by TREEMIX. The one exception involved the introgression from S. aberti kaibabensis into the common ancestor of S. aberti aberti MT-Zuni and S. aberti chuscensis, which was only partially supported. While the four-population test for introgression of S. aberti kaibabensis into S. aberti aberti MT-Zuni was supported, the test for introgression into S. aberti chuscensis was marginally non-significant (Table 1). Mitochondrial introgression: Construction of cytb haplotype network and haplotyping As expected based on the previous study that generated the cytb sequence data, the TCS haplotype network showed clear divisions among haplotypes from Mexico (S. aberti barberbi and S. aberti durangi), and what were previously considered western and eastern haplotype lineages (Fig. 8). The Mexican samples were separated from the eastern haplogroup by a minimum of 14 mutational steps and the western network by a minimum of 22 mutational steps. Western and eastern haplotypes were also highly divergent with a minimum of 14 mutational steps separating them. To provide an informal metric to compare relative levels of divergence between populations using mitochondrial DNA and genome-wide SNPs, we used the populations module in STACKS to generate an alignment of loci present at least 50% of individuals in

6 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 6 of 17 A B C D Fig. 3 Principal Components Analysis plots based on genome-wide SNPs. (a) Plot of the first two eigenvectors with all populations included, (b) plot of the first two eigenvectors with S. aberti barberi and S. aberti kaibabensis removed from the analysis, (c) plot of the first and third eigenvectors with S. aberti barberi and S. aberti kaibabensis removed from the analysis, (d) plot of the second and third eigenvectors with S. aberti barberi and S. aberti kaibabensis removed from the analysis Fig. 4 Structure (top) and Admixture (bottom) bar plots showing the portion of ancestry drawn from each genetic cluster for optimal values of K

7 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 7 of 17 A Nucleotide Diversity ( ) C Proportion polymorphic loci barberi aberti Coc-Gila barberi aberti Coc-Gila aberti MT-Zuni chuscensis aberti Carson-SFW ferreus Carson E Population aberti MT-Zuni chuscensis aberti Carson-SFW ferreus Carson E Population ferreus Pike aberti San Juan kaibabensis ferreus Pike aberti San Juan kaibabensis Observed Heterozygosity barberi aberti Coc-Gila aberti MT-Zuni chuscensis aberti Carson-SFW ferreus Carson E Population ferreus Pike aberti San Juan kaibabensis Fig. 5 Genetic diversity plots. (a) Nucleotide diversity (π), (b) observed heterozygosity, and (c) proportion of polymorphic loci B all populations that exhibited fixed differences between populations (145 loci). In this alignment, S. aberti barberi and S. aberti kaibabensis were about equally divergent from other populations (e.g and 51.7% identity between these respective populations and the S. aberti aberti Coconino-Gila population). In contrast, pairwise identity between S. aberti aberti Coconino-Gila and all other populations was uniformly high (e.g. 98.6% between this population and S. aberti ferreus Pike). Thus, while the mitochondrial data indicate that representatives from eastern and western haplogroups (e.g. S. aberti ferreus Pike and S. aberti aberti Coconino-Gila) are as divergent from one another as they are from Mexican samples, the genome-wide data reveal much less divergence between eastern and western samples than exists between either of these groups and Mexican samples. Cytb haplotyping of additional samples suggested that haplotypes from the western lineage are fixed in the S. aberti aberti Coconino-Gila (N = 44) and Cibola (N = 11) populations and in S. aberti kaibabensis (N = 47), as all additional tested samples had western haplotypes (Additional file 2). In contrast, S. aberti chuscensis and MT-Zuni samples had individuals carrying both haplotypes (26 western and 27 eastern for S. chuscensis; one western and six eastern for MT-Zuni; Additional file 2). Discussion Mito-nuclear discordance resulting from asymmetric patterns of introgression Comparison between the results of our genome-wide analysis and previous analyses of mitochondrial datasets reveals extensive mito-nuclear discordance that complicates interpretation of the evolutionary history of the S. aberti complex. Most notably, previous genetic studies had suggested a close relationship between S. aberti kaibenesis and S. aberti aberti from Arizona, which were highly divergent from eastern populations in Colorado and New Mexico. Moreover, these studies suggested a point of secondary contact between divergent eastern and western lineages within the range of S. aberti chuscensis [21, 22]. Our larger genome-wide analysis does not support these scenarios, instead indicating extensive mitochondrial introgression between divergent populations misled previous attempts to piece together the complex evolutionary history of S. aberti.

8 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 8 of 17 Fig. 6 Maximum-likelihood tree with bootstrap support values for major clades produced by RAXML-NG (GTR model with ascertainment bias correction) While S. aberti kaibabensis has been considered everything from a separate species to a recent offshoot of S. aberti populations south of the Grand Canyon [20, 22, 23], multiple types of analyses presented here show that this subspecies is highly diverged from all other S. aberti subspecies. However, the data also suggest that S. aberti kaibabensis DNA has introgressed into populations of S. aberti aberti and S. aberti chuscensis in the region of Arizona and western New Mexico. Two migration events were identified, with introgression of S. aberti kaiabensis DNA directly into the S. aberti aberti Coconino-Gila population, and into the ancestors of S. aberti aberti Coconino-Gila, S. aberti aberti MT-Zuni, and S. aberti chuscensis. Altogether, the results imply that there have likely been multiple periods of secondary contact and admixture between S. aberti kaibabensis and other populations in the western part of S. aberti s range. Interestingly, all the evidence indicates that introgression was unidirectional, as no traces of ancestry from other populations are detectable in S. aberti kaibabensis. Although the explanation for this is unclear, such a pattern can arise when interbreeding occurs between a resident population and an expanding immigrant population, as introgressed alleles quickly rise in frequency during population expansion [14, 29]. This seems plausible here given that periods of secondary contact likely arose as populations expanded from more restricted ranges during interglacial cycles. Putting together these results with those from earlier studies, we propose that the previously inferred close relationship between S. aberti kaibabensis and S. aberti aberti from Arizona [21, 22] likely reflects introgression of mitochondrial DNA with complete fixation of S. aberti kaibabensis mitochondrial haplotypes in S. aberti aberti from Arizona. While incomplete lineage sorting of ancestral mitochondrial polymorphisms could be an alternative explanation to introgression, we conclude that introgression is the most parsimonious explanation in light of strong evidence for interbreeding between the populations from genome-wide data. Although introgression in either direction would theoretically lead to inference of a close relationship between these populations, several lines of evidence suggest that S. aberti aberti captured mitochondrial DNA from S. aberti kaibabensis rather than the other way around. First, this scenario is most consistent with the pattern of introgression evident in genome-wide data, with unidirectional movement of S. aberti kaibabensis alleles into other western S. aberti populations. In addition, the relatively high level of divergence between western mitochondrial haplotypes and those from eastern populations and Mexico suggests that the western haplotype group most likely traces its origins to S. aberti kaibabensis. For example, the genome-wide dataset demonstrates that S. aberti barberi and S. aberti kaibabensis are highly divergent from all other populations, and the magnitude of

9 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 9 of 17 A 10 se barberi aberti Coconino-Gila Migration Weight ferreus Carson E kaibabensis ferreus Pike chuscensis aberti MT-Zuni aberti San Juan aberti Carson-SFW B Drift Parameter kaibabensis ferreus Pike ferreus Carson E aberti San Juan aberti Carson-SFW aberti Coconino-Gila chuscensis aberti MT-Zuni 10 se barberi Drift Parameter Fig. 7 (a) Maximum-likelihood tree produced by TREEMIX with no migration, (b) maximum likelihood tree produced by TREEMIX with five migration edges this divergence is similar. In contrast, divergence among other populations is much lower, even for those representing the most extreme eastern and western regions occupied by S. aberti (e.g. S. aberti aberti Coconino-Gila and S. aberti ferreus). The fact that mitochondrial haplotypes from the western haplogroup are as divergent from eastern haplotypes as they are from the S. aberti barberi haplogroup is therefore most easily explained if ancestral haplotypes originated in S. aberti kaibabensis. Under the alternative scenario, the high level of divergence between eastern and western haplotypes, on par with divergence from S. aberti barberi, would be difficult to explain. Finally, introgression of S. aberti kaibabensis haplotypes into other S. aberti populations would provide an explanation for the presence of divergent mitochondrial haplotypes in S. aberti chuscensis and S. aberti aberti MT-Zuni populations. The genome-wide data suggests a low level of introgression of S. aberti kaibabensis alleles into the ancestors of these populations, which appears to have been accompanied by some introgression of mitochondrial haplotypes, but without complete mitochondrial capture. Under the alternative scenario, introgression of eastern mitochondrial haplotypes into S. aberti chuscensis and S. aberti aberti MT-Zuni would have needed to occur, which is not supported by genome-wide data. The only piece of evidence seemingly at odds with the direction of introgression we infer is that current S. aberti kaibabensis haplotypes might be expected to show characteristics associated with assumed ancestral haplotypes in the haplotype network (e.g. many connections to other nodes; fewer steps from eastern and Mexican haplotypes) since presumably all S. aberti aberti and S. aberti chuscensis haplotypes would have been derived from ancestral S. aberti kaibabensis haplotypes. However, if introgression occurred in the distant past, ancestral haplotypes may have since been lost from the relatively small S. aberti kaibabensis population, while being retained in relatively large S. aberti populations. Interestingly, the haplotype with the most connections in the western portion of the network is found in both S. aberti aberti Coconino-Gila and S. aberti chuscensis, which would be consistent with ancient introgression and subsequent retention of S. aberti kaibabensis mitochondrial haplotypes into the common ancestor of these populations, a scenario supported by the TREEMIX analysis of the genome-wide data. Altogether, while we cannot completely rule out the alternative scenario, the weight of evidence strongly suggests introgression of S. aberti kaibabensis mitochondrial DNA into other western populations rather than the other way around. Complete mitochondrial capture has been observed in other systems, sometimes even with no evidence for substantial nuclear introgression [13, 30]. Several potential explanations have been proposed to explain this phenomenon, including strong positive selection on favorable mitochondrial haplotypes, sex-related asymmetries in gene flow, and demographic scenarios involving the capture of foreign haplotypes by rapidly expanding populations [3, 11, 13, 14]. Although the explanation in this system is unclear, the fact that complete capture occurred in only one of three populations for which there is evidence of mitochondrial introgression makes selection a less likely explanation. Therefore, we hypothesize that demographic factors or sex-related biases in gene

10 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 10 of 17 Table 1 Migration edges inferred by TREEMIX and results of four population tests Migration edge added Migration weight in final model Variance explained F 4 Test Tree Observed f 4 P-value No migration 97.8% kaibabensis - > aberti Coc-Gila % (ferreus Pike, kaibabensis; chuscensis, < aberti Coc-Gila) ferreus Pike - > ferreus Carson E % (ferreus Pike, chuscensis; ferreus Carson < E, aberti San Juan) equally related to ferreus Carson E, aberti Carson-SFW, % aberti San Juan - > aberti Carson-SFW barberi - >aberti Coc-Gila % (aberti Coc-Gila, chuscensis; barberi, ferreus Pike) < kaibabensis - > common ancestor of chuscensis, aberti MT-Zuni, and aberti Coc-Gila % (barberi, kaibabensis; ferreus Pike, aberti MT-Zuni) (barberi, kaibabensis; ferreus Pike, chuscensis) flow most likely explain the patterns we observed, though future work is necessary to provide strong support for this hypothesis. Whatever the explanation for mitochondrial capture, in this case introgression is also evident for nuclear markers, albeit to a lower extent. In addition to post-divergence gene flow between S. aberti kaibabensis and western S. aberti populations, we also detected introgression in three additional cases: (1) a population equally related to S. aberti aberti Carson-SFW/San Juan and S. aberti ferreus Carson E into S. aberti aberti Carson-SFW, (2) S. aberti ferreus Pike into S. aberti ferreus Carson E, (3) S. aberti barberi into S. aberti aberti Coconino-Gila. While the first case is difficult to evaluate since the source population of introgressed DNA was not sampled, the other cases are generally supported by four population tests and genetic clustering analyses. Introgression involving the two S. aberti ferreus populations makes sense geographically, given that these populations are currently connected by corridors of suitable habitat. Introgression of S. aberti barberi DNA into S. aberti aberti Coconino-Gila highlights the apparent dynamic history of range expansions barberi/durangi kaibabensis Coconino-Gila Coconino-Gila/chuscensis Pike chuscensis San Juan/Carson-SFW Eastern Western Fig. 8 TCS haplotype network generated from cytb sequences Mexico

11 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 11 of 17 and contractions of S. aberti populations, as these subspecies are currently isolated by substantial areas of unsuitable habitat. Interestingly, although mitochondrial introgression might not be obvious in the case involving S. aberti ferreus given the close relationship of the populations, there was no evidence for mitochondrial introgression for the admixture event involving S. aberti barberi, which should have been detectable had it occurred. A pattern of nuclear introgression without evidence for mitochondrial introgression is somewhat atypical, as mitochondrial DNA is generally assumed to introgress more easily than nuclear DNA [3, 10, 11]. However, nuclear introgression is more difficult to detect with only a handful of genetic markers [30, 31], so this assumption may be challenged as more genome-wide datasets are generated in the future. Given that nuclear introgression has potentially important consequences for adaptation and speciation [3 6], future work aimed at identifying genomic regions that have introgressed between Abert s squirrel populations is necessary to elucidate the relative roles of selective and neutral evolutionary forces in driving the patterns we observed. Evolutionary relationships and genetic diversity While we found evidence for gene flow during periods of secondary contact for some groups, overall our data suggest that the evolutionary history of Abert s squirrels has been largely shaped by divergence during periods of habitat isolation. This is evidenced by the fact that all sampled populations were monophyletic in the phylogenetic analysis, except for the Carson-SFW and San Juan populations, which were intermingled. Based on these data, S. aberti barberi from Mexico is the earliest branching lineage in the complex, and the most genetically diverse. This suggests that population sizes have been more stable in the most southern regions occupied by S. aberti. A similar split is seen in pines, as P. arizonica from the Sierra Madre in Mexico is now considered to be a separate species rather than a southern variety of ponderosa pine [32]. Previous estimates based on mitochondrial substitution rates suggest that the split between S. aberti barberi and other populations occurred approximately million years ago [21, 22]. Based on similar relative levels of divergence, S. aberti kaibabensis appears to have separated from other northern populations around the same time. It is not clear, however, when S. aberti kaibabensis reached the north rim of the Grand Canyon. Based on the paleoecological record, ponderosa pine was previously assumed to be absent from areas north of the 36th parallel (central Arizona and New Mexico) during the last glacial maximum [33 35]. If true, this would imply that S. aberti arrived on the north rim relatively recently. Given the amount of genetic divergence that has accumulated since S. aberti kaibabensis split from other S. aberti, this would suggest that substantial divergence would have had to occur prior to reaching the north rim. However, recent genetic analyses of ponderosa pine indicate that glacial refugia were likely to have been present in more northern regions as well [36, 37]. Moreover, climate niche modeling indicates a high probability of occurrence for the western variety of ponderosa pine (P. ponderosa var. ponderosa) during the last glacial maximum (~ 22,000 yr. BP) in the area currently occupied by S. aberti kaibabensis [38]. Although S. aberti is not currently associated with this variety of ponderosa pine, this does not rule out the possibility that such associations existed in the past. If so, S. aberti kaibabensis may have persisted in areas north of the Grand Canyon for longer than previously assumed. Altogether, our data support earlier interpretations of S. aberti kaibabensis as a highly distinct lineage endemic to a remarkably small area of habitat (~ 89,000 ha) on the north rim of the Grand Canyon [39]. Low levels of genetic variation relative to all other populations, and the diminutive range of S. aberti kaibabensis implicate genetic drift in playing a large role in facilitating divergence between this subspecies and other S. aberti populations. For the remaining S. aberti populations, although some caution is warranted in interpreting the relationship between S. aberti aberti Coconino-Gila and other populations (see results), the bulk of the evidence suggests a subsequent split between western and eastern groups followed by further splits within each clade. The overall significant level of differentiation among all S. aberti populations of Colorado, New Mexico, and Arizona stands in contrast to relatively lower levels of differentiation among ponderosa pine populations from these same areas, at least as revealed by studies using a handful of nuclear and mitochondrial genetic markers [56, 57]. Although these studies did provide some evidence for differentiation between northern and southern ponderosa pine populations (roughly corresponding to areas occupied by S. aberti ferreus and S. aberti aberti), the magnitude of this differentiation was relatively low compare to that observed in S. aberti. Areas of unsuitable habitat separating S. aberti populations thus appear to be more formidable barriers to current gene flow among squirrel populations, as divergence even among neighboring populations is relatively high. This is somewhat surprising as previous studies have documented the rapid spread of introduced Abert s squirrel populations into new areas even when separated by patches of unsuitable habitat [40]. In Colorado, populations from eastern and western portions of the state are genetically isolated even though areas of suitable habitat connect them (Fig. 1). Although ponderosa pine is sparse in these connecting corridors, Abert s squirrels are known to be present. However, previous authors have noted that

12 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 12 of 17 these areas appear to have been colonized during a recent range expansion, which could explain the lack of a significant genetic signature of admixture between eastern and western lineages outside of these connecting corridors [41]. Future sampling in these corridors may thus reveal evidence for admixture, similar to what is observed in the S. aberti ferreus Carson E population. Like previous genetic studies, our results provide support for some, but not all, currently S. aberti subspecies designations. Although there is no formal genetic metric for distinguishing subspecies, our data confirm that S. aberti barberi and S. aberti kaibabensis are the earliest diverging lineages in the group and are highly distinct from other S. aberti. Nevertheless, evidence for gene flow between these and other S. aberti populations since divergence suggests that reproductive isolation between these and other populations might be absent or incomplete despite considerable genetic divergence. While challenging, future studies assessing the potential for reproductive isolation between the subspecies (S. aberti barberi and S. aberti kaibabensis) and the rest of the group, would be necessary to determine whether these populations are isolated enough to be considered different species, as has been argued in the past (e.g. earlier schemes designated S. kaibabensis as a separate species). Moreover, future studies genetic studies aimed at determining when gene flow from S. aberti kaibabensis and S. aberti barberi into other populations occurred would be informative. Our data conflicts to some degree with current subspecies designations for the rest of the group, with the most obvious discrepancy involving S. aberti aberti. According to the last formal taxonomic revision of S. aberti [20], this subspecies includes populations from Arizona south of the Grand Canyon, western New Mexico (e.g. the Mount Taylor and Zuni Mountains), southwestern Colorado (San Juan), and northern New Mexico (Carson-SFW). However, our genome-wide data confirm previous conclusions from mitochondrial studies suggesting that Carson-SFW and San Juan populations are most closely related to S. aberti ferreus (Pike and Carson E in this study) [21, 22]. Furthermore, our data indicate that S. aberti aberti MT-Zuni is more closely related to S. aberti chuscensis than S. aberti aberti from Arizona. It is thus clear that S. aberti aberti, as currently described, does not accurately reflect the evolutionary relationships among the included populations. Our data also provide strong support for an eastern clade that includes populations from Pike, Carson E, San Juan, and Carson-SFW, which is consistent with previous suggestions that the range of S. a ferreus should be expanded to include populations in western Colorado and northern New Mexico [21, 22]. Within this clade, there is relatively strong differentiation between Pike and San Juan/Carson-SFW, with Carson E being highly admixed between these two lineages. Future sampling in corridors connecting populations in eastern and western Colorado will provide insight into whether further admixture occurs in this region. Unfortunately, although mitochondrial data suggested that S. aberti barberi and S. aberti durangi might not be genetically distinct [21, 22], we were not able to obtain enough samples of S. aberti durangi to evaluate the relationship between these subspecies. Genetic diversity and future response to climate change Consistent with inferences from mitochondrial data [21, 22], with the exception of S. aberti kaibabensis, current range sizes for S. aberti subspecies do not correlate strongly with observed patterns of genetic diversity. For example, despite the small range size of S. aberti chuscensis this population harbors relatively high levels of genetic variation. Moreover, despite large areas of contiguous ponderosa pine habitat in Colorado, levels of genetic diversity in these populations were relatively low. In general, genetic diversity in S. aberti declines moving from the south to the north and east. This is consistent with initial expansion from southern glacial refugia, as has been proposed by previous authors [40], followed by subsequent colonization of areas further to the north and east. However, we also note new evidence indicating the likely presence of more northern/eastern refugia for ponderosa pine [36 38]. If these refugia were comparatively smaller and therefore harbored less genetic diversity, then a scenario involving divergence through vicariance rather than colonization might also explain observed patterns of genetic diversity. It is unclear to what degree more recent human-based activities such as timber harvesting, fire suppression, grazing, and hunting have influenced observed levels of genetic diversity. The impact of such practices on squirrel populations is potentially substantial, as previous studies have demonstrated that forest structure has important effects on the quality and suitability of Abert s squirrel habitat [42 45]. Variability in the intensity of these factors across the range of Abert s squirrels may thus also contribute to observed differences in relative levels of genetic diversity among populations. As a highly specialized herbivore dependent almost entirely on ponderosa pine, S. aberti is likely to be greatly impacted by future climate change. Predictive models suggest that a large portion of the area currently occupied by Abert s squirrels will be unsuitable habitat for ponderosa pine in the coming decades [37]. Given that Abert s squirrels currently occupy only a small portion of the total range of ponderosa pine, future studies that combine niche modeling specifically for Abert s squirrels under different scenarios of climate change are necessary in order to fully understand the likely impact

13 Bono et al. BMC Evolutionary Biology (2018) 18:139 Page 13 of 17 of habitat loss on Abert s squirrel populations. Risks associated with future habitat loss are further underscored by the fact that much of the current genetic diversity in the Abert s squirrel is distributed among relatively small stands of ponderosa pine that are highly isolated. For example, our study reveals that S. aberti kaibabensis is a highly distinct genetic lineage currently occupying an area encompassing only about 89,000 ha [39]. Abert s squirrel have a complex relationship with ponderosa pines involving both negative impacts on individual plant fitness through selective herbivory [46], and positive impacts through dispersal of spores from mycorrhizal fungi on which trees depend [47 49]. Moreover, digging activity of Abert s squirrels has numerous positive effects on the forest ecosystem by creating microhabitats for other organisms, and redistributing nutrients and water into tree root zones [50]. Impacts of future climate change on squirrels and/or ponderosa pine may therefore have far-reaching consequences for forest communities. Conclusions The results or our study suggest that Abert s squirrels have a complex evolutionary history involving divergence in isolation with subsequent gene flow occurring between some populations during periods of secondary contact. This interbreeding resulted in discordant patterns of introgression across mitochondrial and nuclear genomes, with mitochondrial introgression being higher than nuclear introgression in some cases and lower in another. These variable outcomes suggest that large genome-wide datasets may be necessary to accurately assess the extent of mito-nuclear discordance. Overall, our results highlight the utility of large genome-wide datasets for inferring the evolutionary history of species that have diversified under complex scenarios involving divergence with gene flow. Methods Sample collection and preparation We used DNA samples originally collected as part of previous genetic studies of the Abert s squirrel species complex [21, 22, 51 53], and also obtained 14 additional tissue samples from the Museum of Southwestern Biology, and one S. griseus tissue sample from The Museum of Vertebrate Zoology at Berkeley for use as an outgroup. We follow subspecies designations as proposed by Hoffmeister & Diersing [20] to describe sample populations. Samples included in this study represent five of the six currently recognized subspecies [20]. We did not include S. aberti durangi from Mexico, as only one sample was available for this subspecies, which would preclude population genetic inferences. Approximate collecting locations and sample sizes are shown in Fig. 1, and detailed location information is given in Additional file 2. Genomic DNA from samples used in earlier studies were prepared as previously described [21, 22, 51 53]. Museum samples (spleen or liver) were preserved in ethanol and DNA was extracted using the Qiagen DNeasy Blood and Tissue kit following manufacturer s protocols. Given previous results from phylogeographic studies based on mitochondrial DNA samples that indicated mixing of divergent eastern and western haplotypes in the range of S. aberti chuscensis [21, 22], we genotyped individuals of this subspecies prior to analysis to ensure we had sampled 10 individuals carrying each of the mitochondrial haplotypes. Specifically, we designed a restriction fragment length polymorphism assay based on published cytb sequences [21]. We used the restriction enzyme HphI, which detects different polymorphisms in cytb haplotypes. Prior to library preparation, all genomic DNA samples were run on agarose gels to verify the presence of abundant high molecular weight DNA with little degradation. A total of 95 genomic DNA samples were sent to Floragenex, where Restriction Site Associated DNA (RAD) Illumina libraries were prepared using SbfI as the restriction enzyme and sequenced on an Illumina Hiseq2000 with a 100 bp single end protocol. RAD-seq data processing Sequencing yielded a total of 144,307,453 reads across the 95 samples. Data were processed using STACKS version 1.37 [54, 55]. Sequences were first demultiplexed and cleaned using the process_radtags script with default settings, which resulted in a total of 137,353,563 clean reads across the 95 libraries (mean = 1,445,827; range: 29,605 3,095,410). The sample with the lowest number of reads was removed from subsequent analyses due to large amounts of missing data, and we also removed two additional samples that had been mislabeled (these samples are not included in sample sizes given in Fig. 1). We ran the STACKS pipeline using the denovo_map.pl wrapper on two separate datasets: (1) all S. aberti samples and the S. griseus outgroup sample, and (2) all S. aberti samples. We used the default minimum stack depth ( m) of three, which is the number of identical reads required to initially form a stack (roughly corresponding to an allele). We ran a range of different parameter settings for distance allowed between stacks ( M 2 3) and distance between catalog loci ( n 3, 5, 7, 9 for the dataset with the outgroup and n 2, 3, 5 for the dataset with no outgroup). The distance allowed between stacks parameter ( M) corresponds to the maximum number of nucleotide differences between stacks allowed for them to be merged into a single locus (e.g. -M 2 would mean alleles at a single locus in an individual could not differ by more than two nucleotides). Once loci are built in all individuals, the data from each

Genetic diversity of beech in Greece

Genetic diversity of beech in Greece Genetic diversity of beech in Greece A.C. Papageorgiou (1), I. Tsiripidis (2), S. Hatziskakis (1) Democritus University of Thrace Forest Genetics Laboratory Orestiada, Greece (2) Aristotle University of

More information

GIS Applications to Museum Specimens

GIS Applications to Museum Specimens GIS Applications to Museum Specimens Joseph Grinnell (1877 1939) At this point I wish to emphasize what I believe will ultimately prove to be the greatest value of our museum. This value will not, however,

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

The Origin of Species

The Origin of Species The Origin of Species Introduction A species can be defined as a group of organisms whose members can breed and produce fertile offspring, but who do not produce fertile offspring with members of other

More information

Conceptually, we define species as evolutionary units :

Conceptually, we define species as evolutionary units : Bio 1M: Speciation 1 How are species defined? S24.1 (2ndEd S26.1) Conceptually, we define species as evolutionary units : Individuals within a species are evolving together Individuals of different species

More information

Applications of Genetics to Conservation Biology

Applications of Genetics to Conservation Biology Applications of Genetics to Conservation Biology Molecular Taxonomy Populations, Gene Flow, Phylogeography Relatedness - Kinship, Paternity, Individual ID Conservation Biology Population biology Physiology

More information

Lecture #4 evening (4pm) 1/25/02 Dr. Kopeny

Lecture #4 evening (4pm) 1/25/02 Dr. Kopeny Lecture #4 evening (4pm) 1/25/02 Dr. Kopeny What Species Are and How They Arise Large Ground Finch Medium Ground Finch Sketches of four species of Galapagos Finches from Darwin s Journal of Researches

More information

Intraspecific gene genealogies: trees grafting into networks

Intraspecific gene genealogies: trees grafting into networks Intraspecific gene genealogies: trees grafting into networks by David Posada & Keith A. Crandall Kessy Abarenkov Tartu, 2004 Article describes: Population genetics principles Intraspecific genetic variation

More information

Conservation Genetics. Outline

Conservation Genetics. Outline Conservation Genetics The basis for an evolutionary conservation Outline Introduction to conservation genetics Genetic diversity and measurement Genetic consequences of small population size and extinction.

More information

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17 Chapter 5 Evolution of Biodiversity CHAPTER INTRO: The Dung of the Devil Read and Answer Questions Provided Module 14 The Biodiversity of Earth After reading this module you should be able to understand

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) POPULATION GENETICS NOTES Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) Allele Frequency The number of times a specific allele occurs in a

More information

Phylogeography and genetic differentiation between Loxigilla noctis and L. barbadensis in the Lesser Antilles

Phylogeography and genetic differentiation between Loxigilla noctis and L. barbadensis in the Lesser Antilles Phylogeography and genetic differentiation between Loxigilla noctis and L. barbadensis in the Lesser Antilles Sophie Arnaud-Haond 1, Carla Daniel 2, Sébastien Motreuil 3, Julia Horrocks 2 & Frank Cézilly

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

Rapid speciation following recent host shift in the plant pathogenic fungus Rhynchosporium

Rapid speciation following recent host shift in the plant pathogenic fungus Rhynchosporium Rapid speciation following recent host shift in the plant pathogenic fungus Rhynchosporium Tiziana Vonlanthen, Laurin Müller 27.10.15 1 Second paper: Origin and Domestication of the Fungal Wheat Pathogen

More information

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics)

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogeny? - Systematics? The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogenetic systematics? Connection between phylogeny and classification. - Phylogenetic systematics informs the

More information

Estimating Evolutionary Trees. Phylogenetic Methods

Estimating Evolutionary Trees. Phylogenetic Methods Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent

More information

Reconstructing the history of lineages

Reconstructing the history of lineages Reconstructing the history of lineages Class outline Systematics Phylogenetic systematics Phylogenetic trees and maps Class outline Definitions Systematics Phylogenetic systematics/cladistics Systematics

More information

Unfortunately, there are many definitions Biological Species: species defined by Morphological Species (Morphospecies): characterizes species by

Unfortunately, there are many definitions Biological Species: species defined by Morphological Species (Morphospecies): characterizes species by 1 2 3 4 5 6 Lecture 3: Chapter 27 -- Speciation Macroevolution Macroevolution and Speciation Microevolution Changes in the gene pool over successive generations; deals with alleles and genes Macroevolution

More information

Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley

Integrative Biology 200 PRINCIPLES OF PHYLOGENETICS Spring 2018 University of California, Berkeley Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler Feb. 14, 2018. Phylogenetic trees VI: Dating in the 21st century: clocks, & calibrations;

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Chapter 16: Reconstructing and Using Phylogenies

Chapter 16: Reconstructing and Using Phylogenies Chapter Review 1. Use the phylogenetic tree shown at the right to complete the following. a. Explain how many clades are indicated: Three: (1) chimpanzee/human, (2) chimpanzee/ human/gorilla, and (3)chimpanzee/human/

More information

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species The Origin of Species Galápagos Islands, landforms newly emerged from the sea, despite their geologic youth, are filled with plants and animals known no-where else in the world, Speciation: The origin

More information

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. OEB 242 Exam Practice Problems Answer Key Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. First, recall

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

The Origin of Species

The Origin of Species The Origin of Species Chapter 24 Both in space and time, we seem to be brought somewhere near to that great fact the mystery of mysteries-the first appearance of beings on Earth. Darwin from his diary

More information

Biology 211 (2) Week 1 KEY!

Biology 211 (2) Week 1 KEY! Biology 211 (2) Week 1 KEY Chapter 1 KEY FIGURES: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 VOCABULARY: Adaptation: a trait that increases the fitness Cells: a developed, system bound with a thin outer layer made of

More information

Evolutionary Significant Units (ESUs) & Management Units (MUs)

Evolutionary Significant Units (ESUs) & Management Units (MUs) Evolutionary Significant Units (ESUs) & Management Units (MUs) Diversity is Diverse and Complex Defining Management Units Within Species Genetic Distinctiveness & ESU s definition Measuring & Managing

More information

PHYLOGENY AND SYSTEMATICS

PHYLOGENY AND SYSTEMATICS AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 11 Chapter 26 Activity #15 NAME DATE PERIOD PHYLOGENY AND SYSTEMATICS PHYLOGENY Evolutionary history of species or group of related species SYSTEMATICS Study

More information

Detecting selection from differentiation between populations: the FLK and hapflk approach.

Detecting selection from differentiation between populations: the FLK and hapflk approach. Detecting selection from differentiation between populations: the FLK and hapflk approach. Bertrand Servin bservin@toulouse.inra.fr Maria-Ines Fariello, Simon Boitard, Claude Chevalet, Magali SanCristobal,

More information

SPECIATION. REPRODUCTIVE BARRIERS PREZYGOTIC: Barriers that prevent fertilization. Habitat isolation Populations can t get together

SPECIATION. REPRODUCTIVE BARRIERS PREZYGOTIC: Barriers that prevent fertilization. Habitat isolation Populations can t get together SPECIATION Origin of new species=speciation -Process by which one species splits into two or more species, accounts for both the unity and diversity of life SPECIES BIOLOGICAL CONCEPT Population or groups

More information

5/31/17. Week 10; Monday MEMORIAL DAY NO CLASS. Page 88

5/31/17. Week 10; Monday MEMORIAL DAY NO CLASS. Page 88 Week 10; Monday MEMORIAL DAY NO CLASS Page 88 Week 10; Wednesday Announcements: Family ID final in lab Today Final exam next Tuesday at 8:30 am here Lecture: Species concepts & Speciation. What are species?

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Evolution Test Review

Evolution Test Review Name Evolution Test Review Period 1) A group of interbreeding organisms (a species) living in a given area is called population 2) Give an example of a species. Ex. One wolf Give an example of a population.

More information

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book ESS 345 Ichthyology Systematic Ichthyology Part II Not in Book Thought for today: Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else,

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

Heaving Toward Speciation

Heaving Toward Speciation Temporal Waves of Genetic Diversity in a Spatially Explicit Model of Evolution: Heaving Toward Speciation Guy A. Hoelzer 1, Rich Drewes 2 and René Doursat 2,3 1 Department of Biology, 2 Brain Computation

More information

Unit 7: Evolution Guided Reading Questions (80 pts total)

Unit 7: Evolution Guided Reading Questions (80 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 7: Evolution Guided Reading Questions (80 pts total) Chapter 22 Descent

More information

Processes of Evolution

Processes of Evolution Processes of Evolution Microevolution Processes of Microevolution How Species Arise Macroevolution Microevolution Population: localized group of individuals belonging to the same species with the potential

More information

Supporting Information

Supporting Information Supporting Information Hammer et al. 10.1073/pnas.1109300108 SI Materials and Methods Two-Population Model. Estimating demographic parameters. For each pair of sub-saharan African populations we consider

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV is the process of evolution by which new species arise. The key factor causing speciation is the appearance of genetic differences between two populations, which result from evolution by natural selection.

More information

Lecture 11 Friday, October 21, 2011

Lecture 11 Friday, October 21, 2011 Lecture 11 Friday, October 21, 2011 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean system

More information

Big Idea #1: The process of evolution drives the diversity and unity of life

Big Idea #1: The process of evolution drives the diversity and unity of life BIG IDEA! Big Idea #1: The process of evolution drives the diversity and unity of life Key Terms for this section: emigration phenotype adaptation evolution phylogenetic tree adaptive radiation fertility

More information

Molecular Markers, Natural History, and Evolution

Molecular Markers, Natural History, and Evolution Molecular Markers, Natural History, and Evolution Second Edition JOHN C. AVISE University of Georgia Sinauer Associates, Inc. Publishers Sunderland, Massachusetts Contents PART I Background CHAPTER 1:

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

Why the Indian subcontinent holds the key to global tiger recovery

Why the Indian subcontinent holds the key to global tiger recovery Why the Indian subcontinent holds the key to global tiger recovery QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Samrat Mondol K. Ullas Karanth Uma Ramakrishnan NCBS-TIFR

More information

Classical Selection, Balancing Selection, and Neutral Mutations

Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection Perspective of the Fate of Mutations All mutations are EITHER beneficial or deleterious o Beneficial mutations are selected

More information

Biogeography expands:

Biogeography expands: Biogeography expands: Phylogeography Ecobiogeography Due to advances in DNA sequencing and fingerprinting methods, historical biogeography has recently begun to integrate relationships of populations within

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

Name: Hour: Teacher: ROZEMA. Inheritance & Mutations Connected to Speciation

Name: Hour: Teacher: ROZEMA. Inheritance & Mutations Connected to Speciation Name: Hour: Teacher: ROZEMA Inheritance & Mutations Connected to Speciation Let s Review What We Already Know: What Have We Learned? Lesson 26: PI 1 (Projected Image) - Human Karyotype (image from https://en.wikipedia.org/wiki/karyotype#/media/file:nhgri_human_male_karyotype.png)

More information

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology

SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION. Using Anatomy, Embryology, Biochemistry, and Paleontology SCIENTIFIC EVIDENCE TO SUPPORT THE THEORY OF EVOLUTION Using Anatomy, Embryology, Biochemistry, and Paleontology Scientific Fields Different fields of science have contributed evidence for the theory of

More information

The Tempo of Macroevolution: Patterns of Diversification and Extinction

The Tempo of Macroevolution: Patterns of Diversification and Extinction The Tempo of Macroevolution: Patterns of Diversification and Extinction During the semester we have been consider various aspects parameters associated with biodiversity. Current usage stems from 1980's

More information

4/4/2017. Extrinsic Isolating Barriers. 1. Biological species concept: 2. Phylogenetic species concept:

4/4/2017. Extrinsic Isolating Barriers. 1. Biological species concept: 2. Phylogenetic species concept: Chapter 13 The origin of species 13.1 What Is a Species? p. 414 Ways to identify species 1. Biological species concept: 1. There are many different concepts of species 2. Species are important taxonomic

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved?

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Critical to determining the limits of a species is understanding if two populations

More information

EVOLUTION. Evolution - changes in allele frequency in populations over generations.

EVOLUTION. Evolution - changes in allele frequency in populations over generations. EVOLUTION Evolution - changes in allele frequency in populations over generations. Sources of genetic variation: genetic recombination by sexual reproduction (produces new combinations of genes) mutation

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them?

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Carolus Linneaus:Systema Naturae (1735) Swedish botanist &

More information

How Biological Diversity Evolves

How Biological Diversity Evolves CHAPTER 14 How Biological Diversity Evolves PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell,

More information

that of Phylotree.org, mtdna tree Build 1756 (Supplementary TableS2). is resulted in 78 individuals allocated to the hg B4a1a1 and three individuals to hg Q. e control region (nps 57372 and nps 1602416526)

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

Conservation genetics of the Ozark pocket gopher

Conservation genetics of the Ozark pocket gopher Conservation genetics of the Ozark pocket gopher Project Summary The Ozark pocket gopher (Geomys bursarius ozarkensis) is a range-restricted subspecies of the broadly distributed plains pocket gopher (G.

More information

I. Short Answer Questions DO ALL QUESTIONS

I. Short Answer Questions DO ALL QUESTIONS EVOLUTION 313 FINAL EXAM Part 1 Saturday, 7 May 2005 page 1 I. Short Answer Questions DO ALL QUESTIONS SAQ #1. Please state and BRIEFLY explain the major objectives of this course in evolution. Recall

More information

Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree

Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree Markov chain Monte-Carlo to estimate speciation and extinction rates: making use of the forest hidden behind the (phylogenetic) tree Nicolas Salamin Department of Ecology and Evolution University of Lausanne

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

Fine-Scale Phylogenetic Discordance across the House Mouse Genome

Fine-Scale Phylogenetic Discordance across the House Mouse Genome Fine-Scale Phylogenetic Discordance across the House Mouse Genome Michael A. White 1,Cécile Ané 2,3, Colin N. Dewey 4,5,6, Bret R. Larget 2,3, Bret A. Payseur 1 * 1 Laboratory of Genetics, University of

More information

D. Incorrect! That is what a phylogenetic tree intends to depict.

D. Incorrect! That is what a phylogenetic tree intends to depict. Genetics - Problem Drill 24: Evolutionary Genetics No. 1 of 10 1. A phylogenetic tree gives all of the following information except for. (A) DNA sequence homology among species. (B) Protein sequence similarity

More information

Mathematical models in population genetics II

Mathematical models in population genetics II Mathematical models in population genetics II Anand Bhaskar Evolutionary Biology and Theory of Computing Bootcamp January 1, 014 Quick recap Large discrete-time randomly mating Wright-Fisher population

More information

Detecting historical population structure among highly impacted White Sturgeon populations of the Upper Columbia River

Detecting historical population structure among highly impacted White Sturgeon populations of the Upper Columbia River Detecting historical population structure among highly impacted White Sturgeon populations of the Upper Columbia River Dr. R. John Nelson University of Victoria Victoria, British Columbia, Canada Acispenserformidae

More information

How should we organize the diversity of animal life?

How should we organize the diversity of animal life? How should we organize the diversity of animal life? The difference between Taxonomy Linneaus, and Cladistics Darwin What are phylogenies? How do we read them? How do we estimate them? Classification (Taxonomy)

More information

Microevolution (Ch 16) Test Bank

Microevolution (Ch 16) Test Bank Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members

More information

Lecture 13: Variation Among Populations and Gene Flow. Oct 2, 2006

Lecture 13: Variation Among Populations and Gene Flow. Oct 2, 2006 Lecture 13: Variation Among Populations and Gene Flow Oct 2, 2006 Questions about exam? Last Time Variation within populations: genetic identity and spatial autocorrelation Today Variation among populations:

More information

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution NOTE/STUDY GUIDE: Unit 1-2, Biodiversity & Evolution AP Environmental Science I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE AP Environmental

More information

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution Theory of Evolution Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution the process by which modern organisms changed over time from ancient common

More information

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection CONCEPT 1 EVOLUTION 1. Natural Selection a. Major mechanism of change over time Darwin s theory of evolution b. There is variation among phenotypes genetic mutations play a role in increasing variation

More information

Genetic Drift in Human Evolution

Genetic Drift in Human Evolution Genetic Drift in Human Evolution (Part 2 of 2) 1 Ecology and Evolutionary Biology Center for Computational Molecular Biology Brown University Outline Introduction to genetic drift Modeling genetic drift

More information

Geography of Evolution

Geography of Evolution Geography of Evolution Biogeography - the study of the geographic distribution of organisms. The current distribution of organisms can be explained by historical events and current climatic patterns. Darwin

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41 Contents List of Illustrations List of Tables List of Boxes Preface xvii xxiii xxv xxvii PART 1 ear ly problems, ea r ly solutions 1 1 Speciation, Adaptive Radiation, and Evolution 3 Introduction 3 Adaptive

More information

Lecture #4-1/25/02 Dr. Kopeny

Lecture #4-1/25/02 Dr. Kopeny Lecture #4-1/25/02 Dr. Kopeny Genetic Drift Can Cause Evolution Genetic Drift: Random change in genetic structure of a population; due to chance Thought Experiment: What is your expectation regarding the

More information

History of Biological Diversity. Evolution: Darwin s travel

History of Biological Diversity. Evolution: Darwin s travel History of Biological Diversity Evolution: Darwin s travel Developing the Theory of Evolution The Galápagos Islands Darwin noticed that the different islands all seemed to have their own, slightly different

More information

Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species.

Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species. AP Biology Chapter Packet 7- Evolution Name Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species. 2. Define the following terms: a. Natural

More information

The Origin of Species

The Origin of Species The Origin of Species Chapter 24 Both in space and time, we seem to be brought somewhere near to that great fact the mystery of mysteries-the first appearance of beings on Earth. Darwin from his diary

More information

A Phylogenetic Network Construction due to Constrained Recombination

A Phylogenetic Network Construction due to Constrained Recombination A Phylogenetic Network Construction due to Constrained Recombination Mohd. Abdul Hai Zahid Research Scholar Research Supervisors: Dr. R.C. Joshi Dr. Ankush Mittal Department of Electronics and Computer

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

More information

Speciation and Patterns of Evolution

Speciation and Patterns of Evolution Speciation and Patterns of Evolution What is a species? Biologically, a species is defined as members of a population that can interbreed under natural conditions Different species are considered reproductively

More information

Adaptation and genetics. Block course Zoology & Evolution 2013, Daniel Berner

Adaptation and genetics. Block course Zoology & Evolution 2013, Daniel Berner Adaptation and genetics Block course Zoology & Evolution 2013, Daniel Berner 2 Conceptual framework Evolutionary biology tries to understand the mechanisms that lead from environmental variation to biological

More information

Chapter 5. Evolution of Biodiversity

Chapter 5. Evolution of Biodiversity Chapter 5. Evolution of Biodiversity I. Earth s tremendous diversity A. life comes in many forms B. Recall 1. we can think of biodiversity in three ways a) genetic diversity b) species diversity c) ecosystem

More information

Neutral Theory of Molecular Evolution

Neutral Theory of Molecular Evolution Neutral Theory of Molecular Evolution Kimura Nature (968) 7:64-66 King and Jukes Science (969) 64:788-798 (Non-Darwinian Evolution) Neutral Theory of Molecular Evolution Describes the source of variation

More information

Fields connected to Phylogeography Microevolutionary disciplines Ethology Demography Population genetics

Fields connected to Phylogeography Microevolutionary disciplines Ethology Demography Population genetics Stephen A. Roussos Fields connected to Phylogeography Microevolutionary disciplines Ethology Demography Population genetics Macrevolutionary disciplines Historical geography Paleontology Phylogenetic biology

More information

Evolution. Before You Read. Read to Learn

Evolution. Before You Read. Read to Learn Evolution 15 section 3 Shaping Evolutionary Theory Biology/Life Sciences 7.e Students know the conditions for Hardy-Weinberg equilibrium in a population and why these conditions are not likely to appear

More information

Part 1: Types of Speciation

Part 1: Types of Speciation Part 1: Types of Speciation Speciation Recall from Darwin s 6 main points of his evolutionary theory that speciation is : norigin of new species. nover numerous generations, new species arise by the accumulation

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information